Passive system Evaluation by using Integral thermal-hydraulic test facility

#537, Rui-Chang Zhao, SNPTRD

PSAM12 International Conference
- Briefly introduction of SNPTRD
- Engineered safety system & Ongoing T-H test research
- Evaluation by integral T-H test
Briefly introduction of SNPTRD
Briefly introduction of SNPTRD

- SNPTRD (State Nuclear Power Technology R&D Center) was founded in 2008, a platform for advanced research of AP1000, CAP1400
- Founded by industry leader SNPTC (65%) and research pioneer Tsinghua University (35%)
- A national nuclear R&D center in China
 - Passive Core Cooling System (PXS) research
 - Passive Containment Cooling System (PCCS) research
 - Severe accident research
 - Nuclear safety research
 - Reactor physics research
 - Key equipment research
Engineered safety system & Ongoing T-H test research
Passive core cooling system: (height scale 1/3)

ACME (Advanced Core-Cooling Mechanism Experiment)

Role of ACME
- To simulate the operation of passive core cooling system of CAP1400 for SB-LOCA
- To validate the engineering design of the passive core cooling system
- To collect thermal-hydraulic data for safety code assessment
Test Facilities for Engineered Safety System

Integral Effects Test (IET)

Passive Containment Cooling System: (height scale 1/8)
CERT(Containment safety verification via integral Test)

Role of CERT
- To validate the applicability of WGOTHIC (safety code for containment assessment)
- To verify the engineering design of the passive containment cooling system
- To scaled-simulate the physical process in accident scenario, and the performance of passive containment cooling system of CAP1400
Test Facilities for Engineered Safety System

Separate Effects Tests (SETs)

- In-Vessel Retention (IVR) related:
 - Metal Layer Heat Transfer Experiment
 - Key Factors of Improving CHF Experiment

- Verify Globe-Dropkin
- Relationship Obtain a proper correlation
- Investigate the behavior of the coupled heat transfer in metal layer
- Investigate the key factors of CHF
- Obtain the influence of chemical solution to CHF
- Testify the effects of surface characteristic to CHF
Test Facilities for Engineered Safety System

Separate Effects Tests (SETs) of CAP1400 Large Passive Plant

- **PCCS related:**
 - WAter Distribution Experiment facility (WADE)
 - Steam Condensation on Old Plate Experiment facility (SCOPE)
 - Inner Steam Condensation coupled Outer Evaporation experiment facility (ISCOE)

- Study water cover area rate with the flow rate
- The period of the establishment of stable water film from the top to the bottom
- The effect of weir design to the water film
- To provide data on condensation heat and mass transfer in the presence of a non-condensable gas
- To validate the correlation of heat and mass transfer of condensation, which used in the assessment model
Evaluation by integral T-H test
Passive system evaluation process

- Best estimate code Evaluation Model (Relap5, Gothic ...)
- Results Uncertainty ...
 \textit{By code calculations}
- Prototype Passive System characteristics
Passive system evaluation process

TEST:
- Separate Effect Tests
- Integral Effect Tests
 - scaled
 - non-scaled

Best estimate code Evaluation Model
(Relap5, CATHARE, Gothic...)

Results Uncertainty
... By code calculations

Prototype Passive System characteristics
Passive system evaluation process

TEST:

Separate Effect Tests

Integral Effect Tests
 scaled
 non-scaled

Best estimate code Evaluation Model
 (Relap5, CATHARE, Gothic...)

Results Uncertainty
 ... By code calculations

Prototype Passive System characteristics

Sub-scaled test facilities
Scaling Analysis Methods
H2TS method: hierarchical, two-tiered scaling

TRY to evaluate the system performance by IET(CERT) DIRECTLY
Passive system evaluation process

TEST:

Separate Effect Tests

Integral Effect Tests

scaled
non-scaled

Sub-scaled test facilities
Scaling Analysis Methods
H2TS method: hierarchical, two-tiered scaling

TRY to evaluate the system performance by IET(CERT) DIRECTLY

Best estimate code Evaluation Model
(Relap5, CATHARE, Gothic...)

Results Uncertainty
... By code calculations

Prototype Passive System characteristics

COPYRIGHT RESERVED.
Passive system evaluation process

Best estimate code Evaluation Model (Relap5, Gothic ...)

Results Uncertainty ... By code calculations

Prototype Passive System characteristics

Sub-scaled designed Integral test (APEX, ACME, CERT...)

Results Uncertainty ... By experiments data
Evaluation by integral T-H tests

Scaled methodology: H2TS *(hierarchical, two-tiered scaling)*

PIRT → System → Critical Physical Phen./Proc → Component → Field → Dimensionless Groups

Stage 1
SYSTEM DECOMPOSITION

Provide: System hierarchy

Identify: Characteristic: concentrations, geometries, processes

Stage 2
SCALE IDENTIFICATION

Provide: Hierarchy for: volumetric concentrations, area concentrations, process time scales

Stage 3
TOP-DOWN/SYSTEM SCALING ANALYSIS

Provide: Conservation equations

Derive: Scaling groups and characteristic time ratios

Establish: Scaling hierarchy

Identify: Important processes to be addressed in bottom-up/process scaling analyses

Stage 4
BOTTOM-UP/PROCESS SCALING ANALYSIS

Perform: Detailed scaling analysis for important processes

Derive and validate: Scaling groups

H2TS flow diagram fr. Novak Zuber and etc.
Evaluation by integral T-H tests

Dimensionless value \(i \) of specific physical process \(j \):

Prototype dimensionless:

Test dimensionless:

For best simulation to the prototype:

\[
\frac{\Pi_T}{\Pi_P} \rightarrow 1
\]

Energy conservation equation:

\[
\pi_{p,v}XV \frac{dP}{dt} = \dot{m}_{brk}(h_{brk} - h_{stm}) - \sum_{i=1}^{N} [A(\pi_{p,con,i} \dot{m}_{stm,i}) + (\pi_{p,q,i} h_{q,i} A_i \Delta T_{if,i})]
\]
Evaluation by integral T-H tests

Dimensionless value `i` of specific physical process `j`:

Prototype dimensionless: \(\pi \)

Test dimensionless: \(\pi _ T \)

For best simulation to the prototype: \(\frac{\pi _ T}{\pi _ P} \rightarrow 1 \)

Energy conservation equation:

Energy caused inner pressure change

Released by steam brk.

Absorbed by convection of \(i \)th comp.

Absorbed by condensation on \(i \)th comp.

\[
\frac{\pi _{p/c}XV}{dt} = \Delta h_{brk} (h_{brk} - h_{atm}) - \sum_{i=1}^{N} \left[A(\Delta h_{cond,i} + \Delta T_{if,i}) + (\Delta h_{q,i} A_i \Delta T_{if,i}) \right]
\]
Evaluation by integral T-H tests

Dimensionless value `i' of specific physical process `j':

Prototype dimensionless: $(\pi)^P$

Test dimensionless: $(\pi)^T$

For best simulation to the prototype:

\[
\frac{(\pi)^T}{(\pi)^P} \rightarrow 1
\]

Pressure expression deduced fr. Energy equation:

\[
\frac{dp}{dt}_P = \left(\frac{\pi_{p,t} XV dp}{\pi_{p,t} XV}_P \right)_T - \left(\Lambda \sum_{i=1}^{N} (\pi_{p,cond,i} h_{stm,i})_P \right) T - \left(\Lambda \sum_{i=1}^{N} (\pi_{p,cond,i} h_{stm,i})_T \right) P
\]

Quantitative relationships between the test model and prototype PCCS of NPP.

`x_i' represents the ith parameter of relative measurement variables

Uncertainty analysis

\[
\Delta p_{\text{max}} = \Delta p(t)|_{t=t_{\text{pmax}}} = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial p(t,x_i)}{\partial x_i} \Delta x_i \right)^2 |_{t=t_{\text{pmax}}}}
\]

\[
P[\text{fail of PCCS}] = \text{Prob}[p_{\text{max}} > p_{\text{crit}}]
\]
Thank you!